Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit: Executive summary

Objective. To revise the “Clinical Practice Guidelines for the Sustained Use of Sedatives and Analgesics in the Critically Ill Adult” published in Critical Care Medicine in 2002.

Methods. The American College of Critical Care Medicine assembled a 20-person, multidisciplinary, multi-institutional task force with expertise in guideline development, pain, agitation and sedation, delirium management, and associated outcomes in adult critically ill patients. The task force, divided into four subcommittees, collaborated over six years in person, via teleconferences, and via electronic communication. Subcommittees were responsible for developing relevant clinical questions, using the Grading of Recommendations Assessment, Development and Evaluation method (www.gradeworkinggroup.org) to review, evaluate, and summarize the literature, and to develop clinical statements (descriptive) and recommendations (actionable). With the help of a professional librarian and Refworks database software, they developed a Web-based electronic database of over 19,000 references extracted from eight clinical search engines, related to pain and analgesia, agitation and sedation, delirium, and related clinical outcomes in adult ICU patients. The group also used psychometric analyses to evaluate and compare pain, agitation/sedation, and delirium assessment tools. All task force members were allowed to review the literature supporting each statement and recommendation and provided feedback to the subcommittees. Group consensus was achieved for all statements and recommendations using the nominal group technique and the modified Delphi method, with anonymous voting by all task force members using E-Survey (www.esurvey.com). All voting was completed in December 2010. Relevant studies published after this date and prior to publication of these guidelines were referenced in the text. The quality of evidence for each statement and recommendation was ranked as high (A), moderate (B), or low/very low (C). The strength of recommendations was ranked as strong (1) or weak (2) and either in favor of (+) or against (−) an intervention. A strong recommendation (either for or against) indicated that the intervention’s desirable effects either clearly outweighed its undesirable effects (risks, burdens, and costs) or it did not. For all strong recommendations, the phrase “We recommend …” is used throughout. A weak recommendation, either for or against an intervention, indicated that the tradeoff between desirable and undesirable effects was less clear. For all weak recommendations, the phrase “We suggest …” is used throughout. In the absence of sufficient evidence, or when group consensus could not be achieved, no recommendation (0) was made. Consensus based on expert opinion was not used as a substitute for a lack of evidence. A consistent method for addressing potential conflicts of interest was followed if task force members were coauthors of related research. The development of this guideline was independent of any industry funding.

Conclusion. These guidelines provide a roadmap for developing integrated, evidence-based, and patient-centered protocols for preventing and treating pain, agitation, and delirium in critically ill patients.

Am J Health-Syst Pharm. 2013; 70:53-8
Statements and recommendations

1. Pain and analgesia
 a. Incidence of pain
 i. Adult medical, surgical, and trauma intensive care unit (ICU) patients routinely experience pain, both at rest and with routine ICU care (B).
 ii. Pain in adult cardiac surgery patients is common and poorly treated; women experience more pain than men after cardiac surgery (B).
 iii. Procedural pain is common in adult ICU patients (B).
 b. Pain assessment
 i. We recommend that pain be routinely monitored in all adult ICU patients (+1B).
 c. Treatment of pain
 i. We recommend that preemptive analgesia and/or nonpharmacologic interventions (e.g., relaxation) be administered to alleviate pain in adult ICU patients prior to chest tube removal (+1C).
 ii. We suggest that for other types of invasive and potentially painful procedures in adult ICU patients, preemptive analgesic therapy and/or nonpharmacologic interventions may also be administered to alleviate pain (+2C).
 iii. We recommend that intravenous (i.v.) opioids be considered as the first-line drug class of choice to treat non-neuropathic pain in critically ill patients (+1C).
 iv. All available i.v. opioids, when titrated to similar pain intensity endpoints, are equally effective (C).
 v. We suggest that nonopioid analgesics be considered to decrease the amount of opioids administered (or to eliminate the need for i.v. opioids altogether) and to decrease opioid-related side effects (+2C).
 vi. We recommend that either enterally administered gabapentin or carbamazepine, in addition to i.v. opioids, be considered for treatment of neuropathic pain (+1A).
 vii. We recommend that thoracic epidural anesthesia/analgesia be considered for postoperative analgesia in...
patients undergoing abdominal aortic aneurysm surgery (+1B).

viii. We provide no recommendation for using a lumbar epidural over parenteral opioids for postoperative analgesia in patients undergoing abdominal aortic aneurysm surgery, due to a lack of benefit of epidural over parenteral opioids in this patient population (0,A).

ix. We provide no recommendation for the use of thoracic epidural analgesia in patients undergoing either intrathoracic or nonvascular abdominal surgical procedures, due to insufficient and conflicting evidence for this mode of analgesic delivery in these patients (0,B).

x. We suggest that thoracic epidural analgesia be considered for patients with traumatic rib fractures (+2B).

xi. We provide no recommendation for neuraxial/regional analgesia over systemic analgesia in medical ICU patients, due to lack of evidence in this patient population (0, No Evidence).

2. Agitation and sedation
 a. Depth of sedation versus clinical outcomes
 i. Maintaining light levels of sedation in adult ICU patients is associated with improved clinical outcomes (e.g., shorter duration of mechanical ventilation and a shorter ICU length of stay [LOS]) (B).
 ii. Maintaining light levels of sedation increases the physiological stress response, but is not associated with an increased incidence of myocardial ischemia (B).
 iii. The association between depth of sedation and psychological stress in these patients remains unclear (C).
 iv. We recommend that sedative medications be titrated to maintain a light rather than a deep level of sedation in adult ICU patients, unless clinically contraindicated (+1B).

b. Monitoring depth of sedation and brain function
 i. The Richmond Agitation-Sedation Scale (RASS) and the Sedation-Agitation Scale (SAS) are the most valid and reliable sedation assessment tools for measuring quality and depth of sedation in adult ICU patients (B).
 ii. We do not recommend that objective measures of brain function (e.g., auditory evoked potentials [AEPS], Bispectral Index [BIS], Narcotrend Index [NI], Patient State Index [PSI], or state entropy [SE]) be used as the primary methods to monitor depth of sedation in noncomatose, nonparalyzed critically ill adult patients, as these monitors are inadequate substitutes for subjective sedation scoring systems (−1B).
 iii. We suggest that objective measures of brain function (e.g., auditory evoked potentials [AEPS], Bispectral Index [BIS], Narcotrend Index [NI], Patient State Index [PSI], or state entropy [SE]) be used as the primary methods to monitor depth of sedation in noncomatose, nonparalyzed critically ill adult patients, as these monitors are inadequate substitutes for subjective sedation scoring systems (−1B).

Other than the financial and institutional support mentioned, the authors have no disclosures.

Special thanks to Charles P. Kishman Jr., M.S.L.S., Information Services Librarian, University of Cincinnati, Cincinnati, OH, for his invaluable contributions to these guidelines. Mr. Kishman was instrumental in helping us to develop our search strategies, creating and maintaining the large Web-based guidelines database, and for creating and managing the guidelines bibliography. Additional thanks to Christopher D. Stave, M.L.S. (Lanc Medical Library, Stanford University School of Medicine, Stanford, CA); psychometric experts David Streiner, Ph.D. (University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada; and McMaster University, Department of Clinical Epidemiology and Biostatistics, Hamilton, Ontario, Canada), Celeste Johnston, RN, Ph.D., FAAN (School of Nursing, University of Maryland, Baltimore); GRADE Working Group members Gordon H. Guyatt, M.D. (Departments of Medicine and Clinical Epidemiology and Biostatistics, McMaster University), Holger Schunemann, M.D., Ph.D. (University of Toronto, Department of Clinical Epidemiology and Biostatistics, McMaster University), and Holger Schunemann, M.D., Ph.D. (Department of Clinical Epidemiology and Biostatistics, Health Sciences Centre, McMaster University), and Deborah Cook, M.D. (Department of Medicine, Clinical Epidemiology and Biostatistics, McMaster University); Patricia Rohr, Medical Editor (School of Medicine, Stanford University); Ina Lee, Pharm.D., Neuro-ICU Clinical Pharmacist (University of Washington/ Harborview Medical Center, Seattle); and Kathy Ward and Laura Kolinski (Society of Critical Care Medicine, Mount Prospect, IL) for their technical assistance with these guidelines.

These guidelines have been reviewed and endorsed by the American College of Chest Physicians and the American Association for Respiratory Care, are supported by the American Association for Respiratory Care, and have been reviewed by the New Zealand Intensive Care Society.
Index [PSI], or state entropy [SE]) be used as an adjunct to subjective sedation assessments in adult ICU patients who are receiving neuromuscular blocking agents, as subjective sedation assessments may be unobtainable in these patients (+2B).

iv. We recommend that EEG monitoring be used to monitor nonconvulsive seizure activity in adult ICU patients with either known or suspected seizures, or to titrate electro-suppressive medication to achieve burst suppression in adult ICU patients with elevated intracranial pressure (+1A).

c. Choice of sedative

i. We suggest that sedation strategies using non-benzodiazepine sedatives (either propofol or dexmedetomidine) may be preferred over sedation with benzodiazepines (either midazolam or lorazepam) to improve clinical outcomes in mechanically ventilated adult ICU patients (+2B).

3. Delirium

a. Outcomes associated with delirium

i. Delirium is associated with increased mortality in adult ICU patients (A).

ii. Delirium is associated with prolonged ICU and hospital LOS in adult ICU patients (A).

iii. Delirium is associated with the development of post-ICU cognitive impairment in adult ICU patients (B).

b. Detecting and monitoring delirium

i. We recommend routine monitoring of delirium in adult ICU patients (+1B).

ii. The Confusion Assessment Method for the ICU (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC) are the most valid and reliable delirium monitoring tools in adult ICU patients (A).

iii. Routine monitoring of delirium in adult ICU patients is feasible in clinical practice (B).

c. Delirium risk factors

i. Four baseline risk factors are positively and significantly associated with the development of delirium in the ICU: preexisting dementia, history of hypertension, alcoholism, and a high severity of illness at admission (B).

ii. Coma is an independent risk factor for the development of delirium in ICU patients (B).

iii. Conflicting data surround the relationship between opioid use and the development of delirium in adult ICU patients (B).

iv. Benzodiazepine use may be a risk factor for the development of delirium in adult ICU patients (B).

v. There are insufficient data to determine the relationship between propofol use and the development of delirium in adult ICU patients (C).

vi. In mechanically ventilated adult ICU patients at risk of developing delirium, dexmedetomidine infusions administered for sedation may be associated with a lower prevalence of delirium compared to benzodiazepine infusions (B).

d. Delirium prevention

i. We recommend performing early mobilization of adult ICU patients whenever feasible to reduce the incidence and duration of delirium (+1B).

ii. We provide no recommendation for using a pharmacologic delirium prevention protocol in adult ICU patients, as no compelling data demonstrate that this reduces the incidence or duration of delirium in these patients (0,C).

iii. We provide no recommendation for using a combined nonpharmacologic and pharmacologic delirium prevention protocol in adult ICU patients, as this has not been shown to reduce the incidence of delirium in these patients (0,C).

iv. We do not suggest that either haloperidol or atypical antipsychotics be administered to prevent delirium in adult ICU patients (–2C).

v. We do not recommend the use of dexmedetomidine to prevent delirium in adult ICU patients, as there is no compelling evidence regarding its effectiveness in these patients (0,C).

e. Delirium treatment

i. There is no published evidence that treatment with haloperidol reduces the duration of delirium in adult ICU patients (No Evidence).

ii. Atypical antipsychotics may reduce the duration of delirium in adult ICU patients (C).

iii. We do not recommend administering rivastigmine to reduce the duration of delirium in ICU patients (–1B).

iv. We do not suggest using antipsychotics in pa-
tients at significant risk for torsades de pointes (i.e., patients with baseline prolongation of QTc interval, patients receiving concomitant medications known to prolong the QTc interval, or patients with a history of this arrhythmia) (−2C).

v. We suggest that in adult ICU patients with delirium unrelated to alcohol or benzodiazepine withdrawal, continuous i.v. infusions of dexmedetomidine rather than benzodiazepine infusions be administered for sedation to reduce the duration of delirium in these patients (+2B).

4. Strategies for managing pain, agitation, and delirium to improve ICU outcomes
 a. We recommend either daily sedation interruption or a light target level of sedation be routinely used in mechanically ventilated adult ICU patients (+1B).
 b. We suggest that analgesia-first sedation be used in mechanically ventilated adult ICU patients (+2B).
 c. We recommend promoting sleep in adult ICU patients by optimizing patients’ environments, using strategies to control light and noise, clustering patient care activities, and decreasing stimuli at night to protect patients’ sleep cycles (+1C).
 d. We provide no recommendation for using specific modes of mechanical ventilation to promote sleep in mechanically ventilated adult ICU patients, as insufficient evidence exists for the efficacy of these interventions (0, No Evidence).
 e. We recommend using an interdisciplinary ICU team approach that includes provider education, preprinted and/or computerized protocols and order forms, and quality ICU rounds checklists to facilitate the use of pain, agitation, and delirium management guidelines or protocols in adult ICUs (+1B).

Since these guidelines were last published, we have made significant advances in our understanding of how to provide physical and psychological comfort for patients admitted to the intensive care unit (ICU).1 The development of valid and reliable bedside assessment tools to measure pain, sedation, agitation, and delirium in ICU patients has allowed clinicians to manage patients better and to evaluate outcomes associated with both nonpharmacologic and pharmacologic interventions.2,3 Our expanded knowledge of the clinical pharmacology of medications commonly administered to treat pain, agitation, and delirium (PAD) in ICU patients has increased our appreciation for both the short- and long-term consequences of prolonged exposure to these agents.4,6 We have learned that the methods of administering and titrating these medications can affect patient outcomes as much as drug choice.7-16 For most ICU patients, a safe and effective strategy that ensures patient comfort while maintaining a light level of sedation is associated with improved clinical outcomes.9-13,16-20

Ensuring that critically ill patients are free from pain, agitation, anxiety, and delirium at times may conflict with other clinical management goals, such as maintaining cardio-pulmonary stability while preserving adequate end-organ perfusion and function.21,22 Management goals may be further complicated by the growing number of “evidence-based” bundles and clinical algorithms, some of which have been widely adopted by regulatory agencies and payers.23-30 Finally, tremendous worldwide variability in cultural, philosophical, and practice norms and in the availability of manpower and resources makes widespread implementation of evidence-based practices challenging.31-36

The goal of these clinical practice guidelines is to recommend best practices for managing PAD to improve clinical outcomes in adult ICU patients. We performed a rigorous, objective, transparent, and unbiased assessment of the relevant published evidence. We balanced this evidence against the values and preferences of ICU patients, family members, caregivers, and payer and regulatory groups and important ICU clinical outcomes to develop relevant statements and recommendations that can be applied at the bedside.

The scope of these guidelines includes short- and long-term management of PAD in both intubated and nonintubated adult medical, surgical, and trauma ICU patients. These guidelines only briefly address the topic of analgesia and sedation for procedures, which is described in more detail in the American Society of Anesthesiologists guidelines on conscious sedation.37 The American College of Critical Care Medicine is currently developing separate guidelines on analgesia and sedation for pediatric ICU patients.

This version of the guidelines places a greater emphasis on the psychometric aspects of PAD monitoring tools. It includes both pharmacologic and nonpharmacologic approaches to manage PAD in ICU patients. There is also greater emphasis placed on preventing, diagnosing, and treating delirium, reflecting our growing understanding of this disease process in critically ill patients. These guidelines are meant to help clinicians take a more integrated approach to manage PAD in critically ill patients. Clinicians should adapt these guidelines to the context of individual patient care needs and the available resources of their lo-
cal health care system. They are not meant to be prescriptive or applied in absolute terms.

References